Spherical unitary dual of general linear group over non-Archimidean local field
نویسندگان
چکیده
منابع مشابه
Spherical unitary dual of general linear group over non-Archimidean local field
© Annales de l’institut Fourier, 1986, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...
متن کاملLocal Automorphisms of the Unitary Group and the General Linear Group on a Hilbert Space
We prove that every 2-local automorphism of the unitary group or the general linear group on a complex infinite-dimensional separable Hilbert space is an automorphism. Thus these types of transformations are completely determined by their local actions on the two-points subsets of the groups in question.
متن کاملNon-linear subdivision using local spherical coordinates
In this paper, we present an original non-linear subdivision scheme suitable for univariate data, plane curves and discrete triangulated surfaces, while keeping the complexity acceptable. The proposed technique is compared to linear subdivision methods having an identical support. Numerical criteria are proposed to verify basic properties, such as convergence of the scheme and the regularity of...
متن کاملA Non-abelian Free Pro-p Group Is Not Linear Over a Local Field
In this paper we show that a (non-abelian) free pro-p group cannot be obtained as a closed subgroup of GLn(F ), where F is a nonarchimedean local field and n is arbitrary. Using a theorem of E. I. Zel’manov we deduce some group theoretic properties of linear pro-p groups over a local field. Our main tool is a recent theorem by Pink characterizing compact subgroups of GLn(F ). ∗Partially support...
متن کاملON THE SZEGED INDEX OF NON-COMMUTATIVE GRAPH OF GENERAL LINEAR GROUP
Let $G$ be a non-abelian group and let $Z(G)$ be the center of $G$. Associate with $G$ there is agraph $Gamma_G$ as follows: Take $Gsetminus Z(G)$ as vertices of$Gamma_G$ and joint two distinct vertices $x$ and $y$ whenever$yxneq yx$. $Gamma_G$ is called the non-commuting graph of $G$. In recent years many interesting works have been done in non-commutative graph of groups. Computing the clique...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 1986
ISSN: 0373-0956
DOI: 10.5802/aif.1046